AP Statistics

Random Variables Notes
(This is actually from the beginning of chapter 16, but this WILL be included on this test)

1)

An insurance company offers a “death and disability” policy that pays $10,000 when the policy holder dies
(which the company estimates will occur for 1 out of every 1000 people), or $5,000 when the policy holder is
permanently disabled (estimated to occur for 2 out of every 1000 people). Based on actuarial information,
the company has calculated the probabilities shown in the table below. The company plans to charge $50
per policy. Let the random variable “X” represent the PROFIT made by the insurance company per person.

Calculate and interpret the mean (expected value) and standard deviation of “X".
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Find the mean (expected value) and the standard deviation of the random variable “X".

X 60 | 70 | 80 | 90 Answers 6(X)= YU

P(x) 0.2 0.3 0.4 0.1

sp(x)= A.165. ..



Scaling/Shifting with Means and Variances

remember: variance is (st. dev)’

EX=c)= E(X) % ¢ Var(X + ¢) = Var (¥)
SD(Xc)= 5D (x)

EaX)= at(x) Var(aX) = a*-Var(X)
SD(@X) = & sp(x)

For any two random variables, “X" and "Y":

EX=Y)= E(x)+ E(Y)

If “X" and “Y" are independent:

VarlX= V)= Ve 5) + v ) x" v MUST teindependent!l
- 3 - If they're NOT, then we cannot determine the variance (or
SD(X+Y) = ,JS'DLX) + 5(Y) standard deviation) of the combined random variable.
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3. XandY are two independent random variables with the following attributes:
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EX)=1 E(Y) =24
SD(X)=9 SD(Y) =5

Find the mean and standard deviation of each of these random variables:
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X34 Xp)= ~ @
50(3)(): 3.9 :@ ELXM' 14 3) I+ n 4+l

SD(X|+)(1+ )(3):“)747 +q° + q

b) Y-15 E(Y-15)= 24 ~15 :E]

so(y-15)= 5] R =[ls.ssl

A X+Y g(r4Y)= 1L+ 24 =[35[ f) 5X-3Y

So(x4v)= Jai + 5 = E(sx -3Y) = - 3(>4)

5D(6x - 3Y) = J(_m
d X-Y EB(x-Y)= 1l- 24 ;@ ( ) ) )
sv(xw):W ~Te2a¢



4.  The Podunk Polar Bears (a football team) have two games left in their season (so far they are winless). Experts
estimate that the team has a 60% probability of winning the first game. If they win the first game, they have a
70% chance of winning the 2" game. Otherwise, they only have a 5% chance of winning the second game.
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Construct a probability model for the number of games that the Polar Bears will win.
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The Die (Singular) Game Problem

5.  Youroll a die. If it comes up a 6, you win $100.
If not, you get to roll again, and if you get a 6 the second time, you win $50. If not, you lose ®
Create a probability model for the amount you win at this game, and find the expected amount you'll win.
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Does "X, + X;" = “2X"? (continuing the Die Game Problem...)
Find the mean and standard deviation of the amount of money won if...

a) we double the dollar amounts (and play the game once)

g(2x) = 2(2‘0 -
SD(’!X)Z 2(33) :

b) we play the game twice (without doubling the $ amourits)

e, rx;) = M+ 24 = [A4e]
69()(1 +x;)={l3—3’+’9‘6’ = !‘ng!

c) we play the game 200 times (without changing the $amounts)

E(X. +Xo + ... +)(,_,¢) = 200 C?—Q) -.:

Varéx‘ Fxp 4ot va = 3%+ 35 +... 38 = zoo<38‘) S‘D(X)= W)




B. The Matchmaker Problem |

In a far-away society, males and females are randomly selected to be matched up with each other for life ©

Heights | Mean SD We will assume that
the heights for adult males and females are independent
Males 63.5 3.2 « the heights of both males and females are approximately

normally distributed

Females | B9 28

a) Find the probability that the female is paired with a shorter man.
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1. The Matchmaker Problem |
b) Find the probability that the man is at least [a inches taller than his lady.
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