SAMPLING* DISTRIBUTION WELCOME BACK!!! Collection of a LARGE NUMBER of sample statistics (means or proportions) of a **Sampling Distributions** given sample size. with proportions and means *not "sample distribution"! **AP Statistics** Chapter 18 sampling bowl! PARAMETERS VS. STATISTICS (population) (sample) CONTRACTOR STATE MEANS PROPORTIONS (numerical data) (categorical data) "I THINK p = ____ " Population p = true proportion of yellow beads in the bowl PARAMETER Sample

GO LOOK AT THE TWO GRAPHS...

STATISTIC

For which sample size are we **MORE** likely to get a sample proportion (p-hat) of **less than 30%?**

CENTRAL LIMIT THEOREM (CLT)

When the sample size (n) is LARGE ENOUGH*, the distribution of sample means (\bar{x}) is **APPROXIMATELY NORMAL**, even when the population distribution is NOT.

*"Large enough" means "n" should be at least about 25 or 30... give or take depending on the type of distribution...

CONDITIONS (for both means and proportions)

I. RANDOM SAMPLE

of the population (or at least a representative sample of the population... hopefully no reason to suspect bias???)

II. 10% CONDITION

(ONLY check if sampling WITHOUT REPLACEMENT) Sample size (n) should not exceed 10% of the population size. (this is so that sampling without replacement is SIMILAR ENOUGH to sampling WITH replacement)

III. LARGE ENOUGH SAMPLE SIZE

(next slide...)

(different for means and proportions!) SAMPLE SAMPLE MEANS: Two ways to show this*: **PROPORTONS:** Population is Both np and nq \geq 10 normally distributed Sample size > 30 (by

III. LARGE ENOUGH SAMPLE SIZE CONDITION

Then the distribution of p-hat is approximately normal...

the Central Limit Theorem)

Then the distribution of x-bar is approximately normal...

*...for now. We will introduce a 3rd way to check this condition later.

DESCRIBING THE CENTER AND SPREAD FOR...

These are found on

the formula chart!

MEANS $\mu_{\bar{x}} = \mu$ σ_{-}

These are found on the formula chart!

sampling distribution

VS.

sample distribution

Consider the following scenarios... The mean height of females in the United States is about

The mean height of females in the United States is about 64 inches (5' 4"), with a standard deviation of about 3 inches. Consider the likelihood of the following:

- One randomly selected female has a height of at least 5' 10".
- A random sample of FIVE females has a mean height of at least 5' 10".
- A random sample of **100** females has a mean height of at least 5' 10".

RANDOM SAMPLE

(of experiment units / subjects)

Allows us to GENERALIZE our results to a larger population (very rare in an experiment)

vs

RANDOM ASSIGNMENT

(of subjects to treatments)

Allows us to draw CAUSAL conclusions (cause and effect)

ONTO THE ACTUAL PROBLEMS...

[POSTED IN A SEPARATE LINK ON THE WEBSITE!]