
AP STATISTICS

Chi-Squared Tests

1. **THE M&MS PROBLEM I** M&M/Mars claims that the distribution of proportions of colors for their "plain" milk-chocolate M&M's candies follows the information in the table below. A class of AP Statistics students sifted through a large bag of plain M&M's (which we will assume qualifies as a random sample of plain M&M's) and recorded the colors that they observed, to see if the claimed proportions are accurate. The students expect that the observed proportions will be consistent with the company's claimed proportions.

Color	Blue	Orange	Green	Yellow	Red	Brown	Total
"True" Proportions for plain M&Ms (according to M&M / Mars company)	0.24	0.20	0.16	0.14	0.13	0.13	1.00
Number of observed M&M's	124	85	99	48	59	74	489
Expected counts:	ルオ.36 た ₄	97.8	78.24	68.46	63.57	63.57 L	189 (D. I

Based on the data collected by these students, is there evidence at the 10% level of significance to state that the distribution of proportions of colors of plain M&M's is not consistent with the company's claims? Test an appropriate hypothesis and give statistical evidence to support your conclusion. (*hint: in order to do this problem, you should start by calculating the expected number of M&M's in each color category*)

2. **THE M&Ms PROBLEM II** The M&Ms company claims that the manufactured proportions of colors for Peanut M&Ms differs slightly from Plain M&Ms. What does our data say?

A group of statistics students from another school across town counted the colors in a large bag of peanut M&M's, and those numbers are added to our data in the table below. We will assume that each of the separate samples is a "representative" of its type of M&M.

	Brown	Yellow	Red	Blue	Orange	Green	TOTAL
Plain	124	85	99	48	59	74	489
Peanut	16	36	20	55	47	28	202
TOTAL	140	121	119	103	106	102	691

Is there evidence of a difference in the distributions of proportions of colors between plain and peanut M&Ms? Test an appropriate set of hypotheses at the 10% significance level.

Since we are comparing the relative breakdown of one variable (color) across different "populations" (plain vs. peanut), this is a... χ^2 test for homogeneity, df = (6-1)(2-1) = 5# of rows

from

Ho: The distributions of proportions of colors are the same for plain & peanut M&Ms. HA: The distributions of proportions of colors are different for plain vs. peanet M&Ms.

$$\chi^{2} = \sum \frac{(015 - exp)^{2}}{exp}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{(124 - 99.074)^{2}}{94.074} + \dots + \frac{(28 - 29.32)^{2}}{29.32}$$

$$= \frac{100}{7} + \frac{100}{94.075} + \frac{100}{94.075}$$

- 3. **THE EXTRACURRICULAR PROBLEM** An administrator at a large university is interested in determining whether the residential status of a student is associated with level of participation in extracurricular activities. Residential status is categorized as on campus for students living in university housing and off campus otherwise. A simple random sample of 100 students in the university was taken, and each student was asked the following two questions.
 - Are you an on campus student or an off campus student?
 - In how many extracurricular activities do you participate?

The responses of the 100 students are summarized in the frequency table shown.

	Residentia	al Status		
Level of Participation in Extracurricular Activities	On campus	Off campus	Total	
No activities	9 (12.87)	³⁰ (11.13)	39	/Expected
One activity	¹⁷ (13.86)	²⁵ (28.14)	42	(Expected counts
Two or more activities	7 (6.27)	12 (12.73)	19	in parentheses)
Total	33	67	100	paren. y

Do the survey results provide statistical evidence of an association between residential status and level of participation in extracurricular activities among the students at the university?

$$\chi^{2} + est of independence, df = 2$$
Ho: There is NO association between residential status and level of participation in extracurricular activities among students at this university.
HA: There IS an association......
From calculator... refer to page 623 in textbook

$$\chi^{2} = 2.925$$

$$\chi^{2} = 2.925$$

$$\chi^{2} = 0.2316$$
We lack evidence of an association between residential status and level of participation in extracurricular activities among students at this university.