1-sample t-interval & t-test

Conditions:

- Random Sample
- 10% condition
- Sample size/Normality:
 - **❖** Normal population?
 - ❖ n > 30? (dist. of x-bar roughly normal by CLT)
 - Check graph of sample data ("normality is plausible for the population")

df = n - 1

$$df = n - 1$$

Define μ ("true mean...")

1-sample t-interval:

$$\overline{x} \pm t_{df}^* \times \frac{S}{\sqrt{n}}$$

1-sample t-test:

$$H_{O}: \mu = \mu_{0}$$

$$H_{A}: \mu \stackrel{>}{\neq} \mu_{0}$$

$$t = \frac{\overline{x} - \mu}{\sqrt{n}}$$

Update your foldables (outside, MIDDLE 2 flaps)

2-sample t-interval 2-sample t-test

Define μ_1 and μ_2 ... ("true mean...")

Conditions:

- Random Samples
- Independent Groups
- · 10%

For a randomized experiment:
Check for <u>RANDOM</u>
<u>ASSIGNMENT</u> of subjects to
treatment groups

- Nearly Normal Condition
 - populations are normally distributed
 - n > 30 (for EACH group! not combined!)
 - Graph <u>BOTH</u> sets of data (outliers?)

df = use calculator

Update your foldables (inside, bottom half)

2-sample t-interval:

statistic ± crit. value × standard error

$$(\overline{x}_{1} - \overline{x}_{2}) \pm t_{df}^{*} \sqrt{\frac{S_{1}^{2} + S_{2}^{2}}{n_{1} + n_{2}}} \qquad H_{A}: \mu_{1} - \mu_{2} \geq 0$$

INTERPRET THE INTERVAL:

"We are ____% confident that the true difference in mean _____ is between _____ and

INTERPRET THE CONF. LEVEL:

"If we repeat this method MAAANY times, about ____% of the resulting intervals will contain the true difference in the mean... _____.

2-sample t-test:

$$H_O: \mu_1 - \mu_2 = 0$$
 $H_A: \mu_1 - \mu_2 \leq 0$

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Last flap of our "means" foldable (outside)

matched pairs!

paired t-interval and

paired t-test

Update your foldables (inside, top half)

Define μ_d ("true mean difference...")

***define which way you are subtracting!!!

Conditions:

- Paired data???
- Random sample (pairs)
- 10% Condition
- Nearly Normal Condition
 - o *n > 30* (number of PAIRS!!!)
 - o boxplots/histogram <u>of DIFFERENCES!!!</u>

***do **NOT** graph <u>BOTH</u> boxplots!!!

So we may use a t-distribution, df = n - 1 ("n" is the number of **pairs**)

Update your foldables (inside, bottom half)

on calculator, just do "t-test" or "t-interval" **with the differences**

paired t-interval:

$$\overline{x}_d \pm t_{df}^* \begin{pmatrix} S_d / \sqrt{n_d} \end{pmatrix}$$

paired t-test:

$$H_{o}: \mu_{d} = 0$$

$$H_{A}: \mu_{d} \stackrel{\geq}{\neq} 0$$

$$t = \frac{\overline{x}_{d} - 0}{S_{d}}$$

$$\sqrt{n_{d}}$$