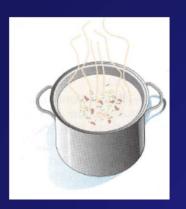
[notes for days 2 and 3]

Welcome Statistics


## Random Sampling

 All statistical sampling designs have in common the idea that

chance

NOT HUMAN CHOICE

is used to select the sample.



## Randomize – let chance do the choosing!

Randomization can protect you against -factors that you know are in the data -factors you are not even aware of

Randomizing makes sure that on the average the sample looks like the population.

## **Summary of Sampling Methods**

- Simple Random Sampling (SRS)
  - every individual has an equal chance of being selected
  - every set of *n* individuals has an equal chance of being selected
  - \*most basic & fundamental type of sampling!

# Describe how to select a SRS of 5 students from a group of 27:

- Assign each student a unique number from 1 27
- Use a RNG (on a calculator/computer) to generate 5
   UNIQUE numbers from 1 27 (repeated numbers will be ignored).
- The 5 students who have their numbers drawn will...



- Assign each student a unique number from 1 27
- Write the numbers 1 27 on slips of paper, and put them in a hat. Stir the slips to mix them.
- Without looking, draw 5 slips of paper from the hat WITHOUT REPLACEMENT.
- The 5 students who have their numbers drawn will...

#### **Summary of Sampling Methods**

#### Stratified Sampling

- divide population into strata (layers, subpopulations)
- Strata are homogenous
- take SRS from each strata

## Cluster sampling

- divide population into clusters
- Clusters are heterogenous (mixed)
- Randomly select one (or more) cluster(s)
- Take a CENSUS within cluster(s)

#### **Summary of Sampling Methods**

#### Systematic Sampling

• Randomly select a starting point, then take (for example) every 10<sup>th</sup> (or 20<sup>th</sup>, or 5<sup>th</sup>, etc.) subject...

## Multistage Sampling

- Randomness is involved at more than one stage
- Be careful not to confuse with CLUSTER sampling

#### bias ≠ error

Bias: Something that causes your measurements to systematically miss in the same direction every time. This is bad.

Sampling "error" is just sampling variation. (If you flip a coin 10 times, you won't ALWAYS get 5 heads & 5 tails... some variation is inevitable with randomness)

so if samples are prone to sampling error, why not conduct a census EVERY TIME?

Taking a CENSUS of the population is (usually) time-consuming and (often) error-prone

#### Types of data - Numerical vs Categorical

Numerical: Does it make sense to take an average?

**Catergorical**: Cannot take an average, but we CAN take a proportion (or percentage) of...

CCNCCNC

| Name               | Job Type   | Age | Gender | Race     | Salary | Zip Code |
|--------------------|------------|-----|--------|----------|--------|----------|
| Jose<br>Cedillo    | Technical  | 27  | Male   | Hispanic | 52,300 | 90630    |
| Amanda<br>Childers | Clerical   | 42  | Female | White    | 27,500 | 90521    |
| Tonia<br>Chen      | Management | 51  | Female | Asian    | 83,600 | 90629    |

A research group wishes to know the mean GPA of all 2600(ish) students at Podunk High School. To estimate this, they take a random sample of 189 students that are enrolled in Pre-AP/AP math classes, and pull those records. The mean GPA of the students in the sample is 3.38. According to the school registrar, the GPA of all 2600(ish) students at Podunk High School is 3.09.

#### Identify the following

- a) Population (of interest): ALL students at PHS
- b) Parameter of interest: (WHAT are we interested in?)

  Mean GPA of ALL students at PHS
- c) Sampling frame: (who had a CHANCE of being selected?)
  All students enrolled in Pre-AP/AP Math
- d) Sample: (who was actually selected?)
  The 189 students.

**GPA** is numerical data:

3.09 - this number is the PARAMETER (refers to the population)

3.38 - this number is the STATISTIC (refers to the sample)

A neighborhood interest group wants to know what proportion of households in Austin watch the TV show "Dancing with the Comets." They select a random sample of 59 houses from Northwest Austin, and find that 35.6% of those families watch the program regularly. Local ratings indicate that about 22% of all households watch "Dancing with the Comets" on a regular basis.

#### Identify the following

- a) Population (of interest): Households in Austin (probably ALL of Austin)
- b) Parameter of interest: What <u>proportion</u> of households in Austin watch "DWTC"
- c) Sampling frame: Households in Northwest Austin
- d) Sample: The 59 houses that were selected.

This is categorical data (think: The answer is Yes/No. 22% or 0.22 - this number is the PARAMETER (refers to the <u>p</u>opulation) 35.6% or 0.356 - this number is the STATISTIC (refers to the <u>sample</u>)