Sampling methods

AP Statistics
Chapter 12

Random Sampling

- All statistical sampling designs have in common the idea that chance

NOT HUMAN CHOIGE is used to select the sample.

Randomize -

let chance do the choosing!

Randomization can protect you against -factors that you know are in the data -factors you are not even aware of

Randomizing makes sure that on the average
the sample "looks" like the population.

Summary of Sampling Methods

- Simple Random Sampling
- every individual has an equal chance of being selected
- every set of n individuals has an equal chance of being selected
- *most basic \& fundamental type of sampling!

Summary of Sampling Methods

- Stratified Sampling
- divide population into strata (homogenous layers, subpopulations)
- take SRS from each strata
- Cluster sampling
- divide population into clusters (each cluster should be representative of population)
- Randomly select one (or more) cluster[s)
- Take a CENSUS of the selected cluster[s]

Summary of Sampling Methods

- Systematic Sampling
-Randomly select a starting point, then take (for example) every $10^{\text {th }}$ (or $20^{\text {th }}$, or $5^{\text {th }}$, etc.] subject...
- Multistage Sampling
- Randomness is involved at more than one stage
- Be careful not to confuse with CLUSTER sampling

Describe how to select a SRS of 5 students from a group of 27:

- Assign each student a unique number from 1-27
- Use a RNG (on a calculator/computer) to generate 5 UNIQUE numbers from that range (repeated numbers will be ignored).
- The 5 students who have their numbers drawn will...

OR

- Assign each student a unique number from 1 - 27
- Write the numbers 1 - 27 on slips of paper, and put them in a hat. Stir the slips to mix them.
- Without looking, draw 5 slips of paper from the hat WITHOUT REPLACEMENT.
- The 5 students who have their numbers drawn will...

Types of data - Numerical vs Categorical

Numerical: Does it make sense to take an average?
Catergorical: Cannot take an average, but we CAN take a proportion (or percentage) of...

Name	Job Type	Age	Gender	Race	Salary	Zip Code
Jose Cedillo	Technical	27	Male	Hispanic	52,300	90630
Amanda Childers	Clerical	42	Female	White	27,500	90521
Tonia Chen	Management	51	Female	Asian	83,600	90629

A research group wishes to know the mean GPA of all 2600(ish) students at Podunk High School. To estimate this, they take a random sample of 189 students that are enrolled in Pre-AP/AP math classes, and pull those records. The mean GPA of the students in the sample is 3.38. According to the school registrar, the GPA of all 2600(ish) students at Podunk High School is 3.09.

Identify the following

a) Population (of interest): ALL students at PHS
b) Parameter of interest:
(WHAT are we interested in?)
Mean GPA of ALL students at PHS
c) Sampling frame: (who had a CHANCE of being selected?) All students enrolled in Pre-AP/AP Math
d) Sample: (who was actually selected?)

GPA is numerical data:
3.09 - this number is the PARAMETER (refers to the population)
3.38 - this number is the STATISTIC (refers to the sample)

A neighborhood interest group wants to know what proportion of households in Austin watch the TV show "Dancing with the Comets." They select a random sample of 59 houses from Northwest Austin, and find that 35.6\% of those families watch the program regularly. Local ratings indicate that about 22% of all households watch
"Dancing with the Comets" on a regular basis.

Identify the following

a) Population (of interest): Households in Austin (probably ALL of Austin)
b) Parameter of interest: What proportion of households in Austin watch "DWTC"
c) Sampling frame: Households in Northwest Austin
d) Sample: The 59 houses that were selected.

This is categorical data (think: The answer is Yes/No.
22% or 0.22 - this number is the PARAMETER (refers to the population)
35.6% or 0.356 - this number is the STATISTIC (refers to the sample)

STOPII

