HW#4 P. 491 # 1, 2, 3, 4, 12, 13, 17 P. 470 # 26

Note Title 11/10/2016

- **1. P-value.** A medical researcher has tested a new treatment for poison ivy against the traditional ointment. With a P-value of 0.047, he concludes the new treatment is more effective. Explain what the P-value means in this context.
- 2. Another P-value. Have harsher penalties and ad campaigns increased seatbelt use among drivers and passengers? Observations of commuter traffic failed to find evidence of a significant change compared with three years ago. Explain what the study's P-value of 0.17 means in this context.
- **3. Alpha.** A researcher developing scanners to search for hidden weapons at airports has concluded that a new device is significantly better than the current scanner. He made this decision based on a test using $\alpha = 0.05$. Would he have made the same decision at $\alpha = 0.10$? How about $\alpha = 0.01$? Explain.
- **4. Alpha again.** Environmentalists concerned about the impact of high-frequency radio transmissions on birds found that there was no evidence of a higher mortality rate among hatchlings in nests near cell towers. They based this conclusion on a test using $\alpha = 0.05$. Would they have made the same decision at $\alpha = 0.10$? How about $\alpha = 0.01$? Explain.
- **12. Alzheimer's.** Testing for Alzheimer's disease can be a long and expensive process, consisting of lengthy tests and medical diagnosis. Recently, a group of researchers (Solomon *et al.*, 1998) devised a 7-minute test to serve as a quick screen for the disease for use in the general population of senior citizens. A patient who tested positive would then go through the more expensive battery of tests and medical diagnosis. The authors reported a false positive rate of 4% and a false negative rate of 8%.
 - a) Put this in the context of a hypothesis test. What are the null and alternative hypotheses?
 - b) What would a Type I error mean?
 - c) What would a Type II error mean?
 - d) Which is worse here, a Type I or Type II error? Explain.
 - e) What is the power of this test?
- 13. Testing cars. A clean air standard requires that vehicle exhaust emissions not exceed specified limits for various pollutants. Many states require that cars be tested annually to be sure they meet these standards. Suppose state regulators double check a random sample of cars that a suspect repair shop has certified as okay. They will revoke the shop's license if they find significant evidence that the shop is certifying vehicles that do not meet standards.
 - a) In this context, what is a Type I error?
 - b) In this context, what is a Type II error?
 - c) Which type of error would the shop's owner consider more serious?
 - d) Which type of error might environmentalists consider more serious?

- **17. Equal opportunity?** A company is sued for job discrimination because only 19% of the newly hired candidates were minorities when 27% of all applicants were minorities. Is this strong evidence that the company's hiring practices are discriminatory?
 - a) Is this a one-tailed or a two-tailed test? Why?
 - b) In this context, what would a Type I error be?
 - c) In this context, what would a Type II error be?
 - d) In this context, describe what is meant by the power of the test.
 - e) If the hypothesis is tested at the 5% level of significance instead of 1%, how will this affect the power of the test?
 - f) The lawsuit is based on the hiring of 37 employees. Is the power of the test higher than, lower than, or the same as it would be if it were based on 87 hires?
- 26. Acid rain. A study of the effects of acid rain on trees in the Hopkins Forest shows that of 100 trees sampled, 25 of them exhibited some sort of damage from acid rain. This rate seemed to be higher than the 15% quoted in a recent *Environmetrics* article on the average proportion of damaged trees in the Northeast. Does the sample suggest that trees in the Hopkins Forest are more susceptible than the rest of the region? Comment, and write up your own conclusions based on an appropriate confidence interval as well as a hypothesis test. Include any assumptions you made about the data.