

1 EXAMPLE Polynomial Long Division

a. Divide $x^2 + 3x - 12$ by x - 3.

1 EXAMPLE Polynomial Long Division

b. Divide $x^2 - 3x + 1$ by x - 4.

Section 6.3 – Polynomial Division

3 EXAMPLE Using Synthetic Division

Use synthetic division to divide $3x^3 - 4x^2 + 2x - 1$ by x + 1.

Use synthetic division to divide $x^3 + 4x^2 + x - 6$ by x + 1.

2 EXAMPLE

Checking Factors

Determine whether x + 4 is a factor of each polynomial.

a.
$$x^2 + 6x + 8$$

Do synthetic division!

IF the remainder equals 0, then:

- (x + 4) is a factor of the polynomial...
- ...which also means that x = -4 is a zero (or "root", or "x-intercept") of the function.

2 EXAMPLE

Checking Factors

Determine whether x + 4 is a factor of each polynomial.

b.
$$x^3 + 3x^2 - 6x - 7$$

5 EXAMPLE Evaluating a Polynomial by Synthetic Division

Find P(-4) for $P(x) = x^4 - 5x^2 + 4x + 12$.

Do synthetic division! In this type of problem, the answer will be the remainder.

5 EXAMPLE Evaluating a Polynomial by Synthetic Division

Use synthetic division to find P(-1) for

$$P(x) = 2x^4 + 6x^3 - 5x^2 - 60.$$

Homework: Section 6.3

Topic 6.1 Polynomial Functions Assignment Pg. 315 (15-21 x3, 25-31 all. 33-57 x3, 61-64 all) Pg. 323 (3-48 x3) 6.2 Polynomials and Linear Factors January 10/11 6.3 Dividing Polynomials Pg. 330 (1-57 odd, 61, 62) Pg. 336 (13-59 odd, 72, 73) January 14/15

6.4 Solving Polynomial Equations Quiz 6.1-6.3

Also, do #48 and #50 on page 324 (section 6.2)