Proportions (z)

sample is randomly selected from population of _____; sample size is < 10% of population size One sample sample size is large enough: **hyp test:** $np \ge 10$ and $n(1 - p) \ge 10$ **Conf Int:** $\hat{np} \ge 10 \text{ and } n(1-\hat{p}) \ge 10$

So I will use z procedures for a population proportion. conf interval:

hyp test:

$$z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \qquad \qquad \hat{p} \pm z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Two samples both samples are randomly selected and selected independently both sample sizes large enough $n_1 \hat{p}_1 \ge 10$ $n_1 \hat{q}_1 \ge 10$ $n_2 \hat{p}_2 \ge 10$ $n_2 \hat{q}_2 \ge 10$

So I will use z procedures for the difference of two population proportions.

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p_c \left(1 - p_c\right) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \qquad p_c = \frac{TotalSuccesses}{TotalSamples} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{x_1 + x_2}{n_1 + n_2} \qquad \hat{p}_1 - \hat{p}_2 \pm z * \sqrt{\frac{\hat{p}_1 (1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2 (1 - \hat{p}_2)}{n_2}}$$

Chi-Square (Counts)	$\chi^2 = \Sigma \frac{\left(Obs - Exp\right)^2}{Exp}$
---------------------	--

	goodness-of-fit	homogeneity	independence
hypothesis	Is sample prop diff from hypothesized population distribution? H _o : they are same (be specific) H _A : they are different	proportions of 2 or more pop are different $H_0: p_1 = p_2 = p_3$ $H_A:$ they are different	two variables are independent (no association) H _O : no association between H _A : an association between
assumptions	all <u>expected</u> counts ≥ 5 random sample	all <u>expected</u> counts ≥ 5 random, independent samples	all $\underline{expected}$ counts ≥ 5 random sample
	So, I will use chi-square procedures for goodness of fit test with k-1 degrees of freedom (k = # of categories)	So, I will use chi-square procedures for test for homogeneity with (r-1)(c-1) df	So, I will use chi-square procedures for test for independence with (r-1)(c-1) df

MEAN	15 (z or t)	
One sample (st dev of population is known) sample is randomly selected or assigned population is fairly normally dist OR sample size is large enough (n > 30) OR boxplot of sample shows no outliers, so plausible that pop is normal So, I will use z procedures for pop means $z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ $\overline{x} \pm z * \frac{\sigma}{\sqrt{n}}$	One sample (st dev of population is <u>NQT KNQWN</u>) <u>use t</u> sample is randomly selected or assigned population is fairly normally dist OR sample size is large enough (n > 30) OR boxplot of sample shows no outliers, so plausible that pop is normal So, I will use t procedures for means with n-1 df $t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} \qquad \qquad$	
Two samples Check both samples for: samples are independent, random from st dev of populations are known population is normal OR sample sizes are large (n ≥ 30) So, I will use z procedures for difference of 2 population means	Two samples: Check both samples for:samples are random, independent (except treatments)st dev of populations are not known use tpopulations are normal ORsample sizes are large (both n \geq 30) OR boxplots of samplesshow no outliers, so plausible that both pops are normal	
Matched pairs - matched (state how); - sample randomly selected from pop of differences - large (n ≥ 30) OR boxplot of single list of differences shows no outliers (one list of differences is created from two matched lists) So I will use t procedures for matched pairs (one sample of differences) n-1 df formulas: see above-right for one sample t	So, I will use t procedures for difference of 2 population means using smaller n-1 degrees of freedom $t = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \qquad (\overline{x}_1 - \overline{x}_2) \pm t * \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	

t test for slope or model utility test or linear regression t test

hypothesis

 $t = \frac{b_1}{2}$

 $H_0: \beta = 0$

H_a: $\beta \neq 0$

 $b_1 \pm t * s_{b_1}$

conditions

scatterplot of the data shows a linear pattern

variability of residuals does not appear to be changing with x

We hope that the residuals from the line at any given x are normally

distributed with mean = 0

(check histogram or normal probability plot of residuals)

So, I will use the linear regression t procedure with df = n - 2