Algebra II 2nd Six Weeks Test Review (Chapters 3 and 4)

Please do all work on separate paper. Reviews are due on test day – no late reviews accepted! *You may use a graphing calculator ONLY for problems with an asterisk (*)

Write the dimensions of each matrix. Identify the indicated element.

$$1. \begin{bmatrix} 2 & -3 \\ 5 & 1 \\ -7 & 4 \end{bmatrix}; a_{21}$$

2.
$$\begin{bmatrix} 5 & -7 & 23 & 10 \\ -9 & 3 & 5 & -2 \\ 1 & 9 & 0 & 2 \end{bmatrix}; a_{23}$$

Find the value of each variable.

3.
$$\begin{bmatrix} a & 2b \\ c-2 & d+3 \end{bmatrix} = \begin{bmatrix} 5 & -7 \\ 10 & 10 \end{bmatrix}$$

4.
$$\begin{bmatrix} 3 & 5 & -y & x \\ z & 0 & 3a & 6 \end{bmatrix} = \begin{bmatrix} 3 & 3c & 7 & 4 \\ 8 & 0 & -9 & 3b \end{bmatrix}$$

Solve each matrix equation.

5.
$$X-2\begin{bmatrix} 3 & 4 \\ 4 & 2 \\ 1 & 9 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 9 & 12 \\ 3 & 2 \end{bmatrix}$$

6.
$$X + 3\begin{bmatrix} 2 & 2 & 0 \\ 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 \\ -3 & -3 & 4 \end{bmatrix}$$

Use matrices A, B, C to find each product, sum or difference if possible, If not write undefined.

$$A = \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 2 \\ -2 & 1 \\ -1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

7. CA

9.
$$2A + 4C$$

State whether each product is possible. If so, state the dimensions of the product, AND find the product.

10.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$

11.
$$\begin{bmatrix} 1 & 2 \\ 12 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 4 & 3 \\ 5 & 2 \end{bmatrix}$$
 12.
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

12.
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Evaluate the determinant of each matrix.

13.
$$\begin{bmatrix} -3 & 4 \\ 1 & -1 \end{bmatrix}$$
 14.
$$\begin{bmatrix} 3 & 9 \\ 3 & 2 \end{bmatrix}$$

14.
$$\begin{bmatrix} 3 & 9 \\ 3 & 2 \end{bmatrix}$$

Find the inverse matrix, if it exists.

15.
$$A = \begin{bmatrix} 2 & -2 \\ -1 & 2 \end{bmatrix}$$
 16.
$$C = \begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix}$$

16.
$$C = \begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix}$$

Solve each equation.

17.
$$\begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} X = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

18.
$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} X = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

Determine whether the matrices are multiplicative inverses.

19.
$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}, \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$$

17.
$$\begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} X = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
18.
$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} X = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
19.
$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}, \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$$
20.
$$\begin{bmatrix} 4 & 9 \\ 2 & 6 \end{bmatrix}, \begin{bmatrix} 1 & \frac{-3}{2} \\ \frac{-1}{3} & \frac{2}{3} \end{bmatrix}$$

Evaluate the determinant of each matrix. $\begin{array}{c|cccc}
 & -1 & 2 & -2 \\
 & 0 & 1 & 3 \\
 & 4 & 2 & -1
\end{array}
\quad 22. \begin{bmatrix} 2 & 6 & -1 \\ 1 & 0 & 0 \\ 1 & 3 & -2 \end{bmatrix}$

Find the inverse matrix, if it exists.

*23.
$$\begin{bmatrix} 1 & 2 & 0 \\ -2 & 0 & -3 \\ 3 & -1 & 5 \end{bmatrix}$$
*24.
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$$

*24.
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$$

Solve each equation for X (use a graphing calculator).

*26.
$$\begin{bmatrix} 1 & 2 & 0 \\ -2 & 0 & -3 \\ 3 & -1 & 5 \end{bmatrix} X = \begin{bmatrix} -1 \\ 12 \\ -20 \end{bmatrix}$$

Determine whether the matrices are multiplicative inverse of each other.

27.
$$A = \begin{bmatrix} -2 & 2 & 3 \\ 1 & -1 & 0 \\ 0 & 1 & 4 \end{bmatrix}, B = \begin{bmatrix} \frac{-4}{3} & \frac{-5}{3} & 1 \\ \frac{-4}{3} & \frac{-8}{3} & 1 \\ 1 & \frac{2}{3} & 0 \end{bmatrix}$$

Solve each system using inverse matrices (show your matrix equations

$$28. \begin{cases} x + 3y = 5 \\ x + 4y = 6 \end{cases}$$

$$\begin{cases}
2x + y = 1 \\
3x - y = 9
\end{cases}$$

Solve each system using inverse matrices (show your matrix equations:!!).

28.
$$\begin{cases} x+3y=5 \\ x+4y=6 \end{cases}$$
29.
$$\begin{cases} 2x+y=1 \\ 3x-y=9 \end{cases}$$
*30.
$$\begin{cases} 2x+2y+5z=16 \\ 4x-2y+3z=-2 \\ 8z-5y-2z=4 \end{cases}$$
*31.
$$\begin{cases} x+y+z=-1 \\ 3x+5y+4z=2 \\ 3x+6y+5z=0 \end{cases}$$

*31.
$$\begin{cases} x + y + z = -1 \\ 3x + 5y + 4z = 2 \\ 3x + 6y + 5z = 0 \end{cases}$$

Solve each system of equations by using: a) Substitution b) Elimination c) Cramer's Rule If done properly, you should get the same answer all 3 times.

$$\begin{cases} x + 3y = 5 \\ x + 4y = 6 \end{cases}$$

33.
$$\begin{cases} 2x + y = 1 \\ 3x - y = 9 \end{cases}$$

34. Solve by elimination:

$$\begin{cases} 4x - 3y = -2\\ 4x + 5y = 14 \end{cases}$$

35. Solve each system of inequalities by graphing:

$$\begin{cases} 2x \ge y + 3 \\ x < 3 - 2y \end{cases}$$

36. Graph the system of constraints. Find the coordinates of the vertices, and maximize the function P = 3x - 5y.

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x \le 3 \\ -2x + 3y \le 6 \end{cases}$$

*37. Suzie has \$1, \$5 and \$10 bills in her wallet worth \$96. If she had one more \$1, she would have just as many \$1 bills as \$5 and \$10 bills combined. She has 23 bills total. How many of each denomination does she have? (set up a system of 3 equations/3 variables, and solve using inverse matrices)

Algebra II 2nd Six Weeks Test Review (Chapters 3 and 4)

Solutions to selected questions

1. $3x2 \text{ matrix}; a_{21} = 5$

3.
$$a = 5$$
; $b = -3.5$; $c = 12$; $d = 7$

5.
$$X = \begin{bmatrix} 11 & 15 \\ 17 & 16 \\ 5 & 20 \end{bmatrix}$$

7.
$$CA = \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}$$

$$9. \quad 2A + 4C = \begin{bmatrix} 6 & -2 \\ 6 & 0 \end{bmatrix}$$

10. Yes, product will be a 3x4 matrix:

11. Not defined (2x2 times a 3x2)

12. Yes, product will be a 2x2 matrix: $\begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}$

15. Yes, the inverse exists... det A = 2,

$$A^{-1} = \begin{bmatrix} 1 & 1 \\ 1/2 & 1 \end{bmatrix}$$

16. $\det C = 0...$ so no inverse exists.

17.
$$X = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

18.
$$X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

19. Product =
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, so yes,

they are multiplicative inverses.

21. 39

*23. The multiplicative inverse matrix is

$$\begin{bmatrix} 3 & 10 & 6 \\ -1 & -5 & -3 \\ -2 & -7 & -4 \end{bmatrix}$$

*26.
$$X = \begin{bmatrix} -3\\1\\-2 \end{bmatrix}$$

27. Product =
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{8}{3} & 0 & 1 \end{bmatrix}$$
,

so they are NOT multiplicative inverses.

28. (2, 1)

29. (2, -3)

*30. (5, 8, -2)

*31. (1, 7, -9)

32. (2, 1)

33. (2, -3)

34. (1, 2)

*37. Setup: x = # of \$1 bills, y = # of \$5 bills, z = # of \$10 bills:

$$\begin{cases} x + 5y + 10z = 96 \\ x + y + z = 23 \\ x + 1 = y + z \quad or \quad x - y - z = -1 \end{cases}$$

Solution:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 11 \\ 7 \\ 5 \end{bmatrix}$$